
1

A* Agent Traversal on Marching Cubes

Corbyn LaMar, Salem Richie, Skyler Boelts

1 Introduction

Believable terrain generation is integral to almost all procedurally generated video games.

Many of these games require this terrain to be modifiable and traversable in real time. One

solution for terrain creation is the Marching Cubes algorithm. Marching Cubes is a surface

construction algorithm first published in 1987, though it was under patent protection until

2005. When combined with a way to initially generate terrain data, it produces believable

voxel approximations of surfaces. This terrain then needs to be traversable, and a simple

way to do so is with a grid-based search space and a search algorithm, in this case A*.

This paper details the creation of a proof of concept we made in Unity Engine and

C#, along with any issues faced and lessons learned from the implementation of Marching

Cubes and of A* pathfinding.

2 Setting Up the Marching Cube Algorithm

The Marching Cubes algorithm builds a mesh by interpreting data associated with points in

a scalar field. Our implementation of this algorithm is broken down into the following steps.

2.1 The Marching Table

The Marching Table is a crucial component of the Marching Cubes algorithm. It serves as a

static reference table used to determine which triangles should be constructed within each

voxel on a regular 3-dimensional grid. The configuration of a particular voxel,

corresponding to an entry in the Marching Table, is determined by the values of its vertices

(adjacent voxels share four vertices.)

However, in practical implementations of Marching Cubes, due to factors such as

interpolation or floating-point errors, there can be ambiguity in determining a voxel’s

configuration. In these special cases, the values at voxel vertices are not definitively above

or below the threshold (inside or outside of the terrain,) resulting in multiple possible

interpretations for surface geometry.

For our implementation, we used a Marching Table found online from a student project at an

institution in France [Experimenting with Marching Cubes 02]. In doing so, we adopted

their understanding of how voxels are configured based on the vertex data within them. This

includes accounting for their six found ambiguous cube cases that would normally cause

topology problems, for which they provided alternate configurations as fixes.

2.2 Generating the Heightmap

In order to properly generate an interesting surface mesh using the Marching Cubes

algorithm, we needed to initialize each vertex with height values. Since we wanted to

2

generate smooth terrain resembling a landscape of rolling hills, the best approach here was

using a type of Perlin noise to generate the base heightmap. We generated 3-dimensional

Perlin noise by combining multiple 2-dimensional Perlin noise functions along each axis in

either direction before normalizing the result. Afterwards, we set all terrain below the

generated height for the given y-value to zero, which represents filled-in ground.

Listing 1 Function to generate 3D Perlin Noise.
public float PerlinNoise3D(float x, float y, float z)
{
 float ab = Mathf.PerlinNoise(x, y);

 float bc = Mathf.PerlinNoise(y, z);
 float ac = Mathf.PerlinNoise(x, z);

 float ba = Mathf.PerlinNoise(y, x);
 float cb = Mathf.PerlinNoise(z, y);
 float ca = Mathf.PerlinNoise(z, x);

 float abc = (ab + bc + ac + ba + cb + ca);

 return abc / 6.0f;
}

2.3 Marching Cube Algorithm

With each vertex now containing proper data for its height, we could verify our

implementation of the Marching Cubes algorithm. We loop through each voxel within the

grid and note the height at each of its eight vertices using the height values previously

generated. If a vertex is above a specified height threshold, then it is considered filled for

that voxel’s configuration and will influence part of the mesh. Otherwise, a vertex is kept

empty for that voxel’s configuration as it falls outside of the mesh.

We then use the configuration derived from the values of all eight vertices to

determine the indices of the Marching Table which will inform the generation of triangles

within the voxel. Generating the mesh within the Unity Engine was simple since our

algorithm collected all the resulting vertices and triangles that we could use to recalculate

the normals of the mesh and then assign to a shared mesh component.

To smooth out the generated surface, we calculated the position of each vertex

(within the triangles composing the mesh) along the corresponding voxel’s edge by

performing linear interpolation between the two endpoints of the edge. The interpolation

factor is determined by the difference between the height threshold and the scalar field value

at one endpoint of the edge, divided by the difference between the scalar field values at both

endpoints of the edge. This ensures each vertex is placed corresponding to its relative height

within the cube.

3

3 Terrain Modification

With terrain successfully being generated using the Marching Cubes algorithm, we moved

on to the next step: modifying the terrain in real time. To start, we ran the Marching Cubes

algorithm to generate a new mesh for each frame, which was passable since our grid space

was still on the small end at this point. We set up a simple spherical player controller that

flies around the space, adding terrain within the sphere on left mouse click, and removing

terrain within the sphere on right mouse click. This was achieved by adding to or subtracting

from the heightmap for each voxel vertex within our grid.

After implementing the terraforming feature, we also created a flag for the terrain named

“isDirty.” The purpose of this flag was to ensure that the terrain would not update unless the

terrain was modified, minimizing time spent running the Marching Cubes algorithm. If the

terrain is modified by the aforementioned player controller, the isDirty flag will be set so

that the next frame update would show the changes.

4 Generating in Chunks

While we could generate the terrain now relatively quickly, the speed at which it updated

remains dependent on the size of the voxel grid. The larger the grid, the longer it takes to

generate initially and the longer it takes to modify terrain with user input. To solve this

problem, we needed to scale down the grid structure for a given marching cube script and

have multiple grids generated side by side in chunks.

Each chunk handles its own grid and mesh, though a Chunk Manager was written to

manage chunks as one unit and communicate between them. When terraforming one chunk,

the chunk manager updates that chunk and any adjacent chunks that may have changed. This

is to ensure that the edges along the terraformed chunk match. With this approach, the

maximum number of chunks being updated at once is nine, though, more realistically, it is

going to be between one and four chunks. This runs much faster than regenerating the entire

space as one grid, though the optimizations are less noticeable with smaller map sizes. This

cross-chunk communication ended up also being important for updating the valid neighbors

for traversable nodes across chunk borders.

5 Agent Traversability Map

After building a world with formable terrain, our next step was to allow an agent to pathfind

on it. We opted to use a grid-based search structure as we were already storing data in

equivalent structures within the chunks.

Creating a list of known traversable nodes would not only help in ensuring the agent

does not walk through walls or beneath terrain, but it also helps prune the search space by

requiring that only traversable nodes can be considered valid neighbors to other traversable

nodes. By verifying traversable nodes as they are modified, we can speed up the search

when agents start pathfinding.

4

The main challenge was determining which conditions make a particular position

traversable. For our definition of a valid, traversable position, we did a simple solid check

for a given vertex and the two positions above it. The vertex at a given position would need

to be solid for the agent to stand on, whereas the two positions above it would need to be

empty for the agent to be able to safely stand at that point without hitting their head. A

vertex being solid is dependent on its height values in the voxel grid used for the Marching

Cubes algorithm.

Figure 1 Traversable nodes visualized over the terrain using Unity Engine Gizmos.

6 A* Pathfinding

To get the agent to navigate through the environment, the A* search algorithm is run starting

at the position of the agent. A* is a modified version of the Dijkstra search algorithm that

estimates the expected cost of paths from discovered nodes to the goal using a heuristic

function. The heuristic chosen for the approximate cost was a 3-dimensional Euclidean

distance calculation. While other heuristics could be used, this one was used as it is

guaranteed to be admissible and not exceed the true cost of a node’s remaining path to the

goal.

Since traversable nodes and their valid neighbors are recomputed after each terrain

change, each node already houses information about its traversable neighbors. Using this

data, the agent can reference the traversability map as the search space for the A* algorithm.

The pathfinding algorithm references valid neighbors as it adds new nodes to the open list.

The open list is organized by cost into range-limited buckets to speed up the pop operation

while still allowing for a quick sorted insert operation.

To make the agent movement appear smooth, the agent’s position is interpolated

between each node on the path. In addition, the agent’s y-position is set to match the top

5

facing mesh by performing a raycast downwards to find the exact surface of the mesh and

snap to the vertical position of the collision point.

This worked well, but there were some edge cases that came up while testing the

pathfinding. As the terrain is modified in real time, it is necessary to ensure that the agent

does not walk through invalid terrain. Our solution is to have the agent pathfind again each

time modifications finish to ensure it always finds the optimal path.

Another issue occurred when the agent received a path request while being

positioned between two nodes. Due to rounding the agent’s position to the nearest voxel

position, it would sometimes assume the agent was on a non-traversable node. To solve this

issue, the agent will check for the nearest traversable node if it is not standing on one. This

check has a small radius, so the agent can still be stranded.

Figure 2 Agent’s path visualized in pink using Unity Engine Gizmos.

7 Importance and Application

Combining Marching Cubes with the A* algorithm for dynamic agent terrain traversal offers

several advantages in games. Firstly, the ability to have terrain that is capable of being

procedurally generated as well as being modified at runtime offers another level of

gameplay variety and immersion. Since the Marching Cubes algorithm efficiently converts

voxel data into a continuous surface, it enables the creation of diverse and realistic terrain

features that can adapt to player actions or external events during gameplay. This is further

enhanced by having the agents in the world adapt to these changes.

A* complements this dynamic terrain generation by providing an effective

pathfinding solution that allows the agents to navigate through the changing environment

intelligently. By continuously updating the traversability graph based on the evolving

6

Marching Cubes mesh, A* ensures that agents can find optimal paths around newly

generated obstacles, altered terrain features, or dynamically shifting regions.

Applying this technique into video games can allow for unique gameplay

experiences. For example, players can utilize their tools to dig canyons between their base

and an enemy base for protection. Players might also choose to build bridges to allow

friendly characters across, or they might create networks of tunnels that non-player agents

can still path within. All of this can be achieved by using the Marching Cubes algorithm and

A* pathfinding. At a larger scale, appropriate optimizations would be implemented for

smoother real time updates to the terrain mesh and A* search space, which are both derived

from a 3-dimensional grid.

8 Conclusion

Though this project is not currently optimized or featured enough to be used in a game, it

demonstrates sufficient proof of concept for using this style of terrain generation and

pathfinding in conjunction. The agent’s moment feels believable, and it can pathfind through

any sort of terrain made by the user.

 Additional features would include optimizations for real time updates to the terrain

and additional updates to the traversability map. A variety of terrain brushes and tools would

allow for more precise terrain sculpting by players. On top of this, using multiple

traversability maps or different heuristic functions would allow different types of AI agents

to have unique movement behaviors.

 This approach is notable for its scalability and performance. Marching Cubes meshes

can represent large and stylized terrains without consuming excessive memory or

computational resources. By using portions of the existing grid as a search space for A*

pathfinding, this allows for efficient navigation in expansive, flexible game worlds without

compromising performance. While not applicable to all games, the combination of Marching

Cubes and A* Pathfinding is useful for the right genres within game development.

7

9 References

References to sourced material for the base Marching Cube algorithm and Marching Tables

may be found below.

9.1 Online Documents:

[Experimenting with Marching Cubes 02] Charnoz, Arnaud, et al. Marching Cubes Tutorial,

users.polytech.unice.fr/~lingrand/MarchingCubes/applet.html.

	A* Agent Traversal on Marching Cubes
	1 Introduction
	2 Setting Up the Marching Cube Algorithm
	2.1 The Marching Table
	2.2 Generating the Heightmap
	2.3 Marching Cube Algorithm

	3 Terrain Modification
	4 Generating in Chunks
	5 Agent Traversability Map
	6 A* Pathfinding
	7 Importance and Application
	8 Conclusion
	Though this project is not currently optimized or featured enough to be used in a game, it demonstrates sufficient proof of concept for using this style of terrain generation and pathfinding in conjunction. The agent’s moment feels believable, and it ...
	9 References
	9.1 Online Documents:

